Search results

Search for "dipolar relaxation" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • in the range of 2 ± 1 µm. Figure 6a reports the frequency dependence of the dielectric constant for pure parylene (samples O and K) and NCPC films (samples A to F). The general observation of an increase in the dielectric constant ε’ with a decrease in frequency was clearly explained by the dipolar
  • relaxation of the C–Cl bond (β-relaxation) [34]. Compared to the pure parylene sample (O) all other samples present a higher dielectric constant over the whole frequency range. Many factors could explain this result: 1. An increase in polymer thickness sometimes leads to an increase in the dielectric
PDF
Album
Full Research Paper
Published 12 Feb 2019

Dielectric properties of a bisimidazolium salt with dodecyl sulfate anion doped with carbon nanotubes

  • Doina Manaila Maximean,
  • Viorel Cîrcu and
  • Constantin Paul Ganea

Beilstein J. Nanotechnol. 2018, 9, 164–174, doi:10.3762/bjnano.9.19

Graphical Abstract
  • 107 Hz (Figure 8). At lower temperatures, for the CNT- doped samples (Figure 9a,b), the straight lines with the greater slope are seen over a wider frequency range (more evident in Figure 9c, at 293 K). In the dielectric loss spectra, presented in Figure 8 and Figure 9, a dipolar relaxation process
  • permittivity and electric conductivity spectra is complex, due to the superposition of ionic conductivity effect and dipolar relaxation specific to LC. Ionic conductivity is dominant and its effects are indirectly seen through the electrode polarization (EP) effect. (2) The very high dielectric permittivity
PDF
Album
Full Research Paper
Published 16 Jan 2018

Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network

  • Doina Manaila Maximean,
  • Octavian Danila,
  • Pedro L. Almeida and
  • Constantin Paul Ganea

Beilstein J. Nanotechnol. 2018, 9, 155–163, doi:10.3762/bjnano.9.18

Graphical Abstract
  • ″, are different for the samples CA and CA/E7. Similar to the DS results, at low frequencies an E7 molecule-dynamic dipolar relaxation process is overlapping on the intrinsic CA processes (Figure 7b and Figure 5b). Another process is observed at high frequencies (1 MHz), attributed to LC molecules in the
PDF
Album
Full Research Paper
Published 15 Jan 2018

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • spectroscopy; dipolar relaxation; entropy; gauche defect; organic monolayer; Introduction Self-assembled monolayers (SAM) and organic molecular layers (OML) have attracted great interest over the past two decades because surface functionalization offers great flexibility for a molecular-level control of
  • relaxation frequencies fB1 and fB2 reveals increasing motional constraints, which are attributed to electrostatic pressure effects. The magnitude of this electrostatic pressure remains well below the applied tip pressure used in AFM experiments (0.03–60 GPa) [21][24]. Since the dipolar relaxation peaks, B1
  • and B2, overlap with peak A, a spectral decomposition is mandatory to obtain the intensities and frequencies of dipolar relaxation peaks, along with the asymmetric peak shapes in the context of Dissado–Hill (DH)/Jonscher theories for many-body interactions [42][43][44][45][46]. Arrhenius plots of the
PDF
Album
Full Research Paper
Published 26 Feb 2015
Other Beilstein-Institut Open Science Activities